[Total No. of Questions - 9] [Total No. of Printed Pages - 3] (2125)

15103

B. Tech 4th Semester Examination Network Analysis and Synthesis (OS) EC-4004

Time: 3 Hours Max. Marks: 100

The candidates shall limit their answers precisely within the answerbook (40 pages) issued to them and no supplementary/continuation sheet will be issued.

Note: Section E is Compulsory. Attempt other four questions, selecting one from each section A, B, C, D.

SECTION - A

 Steady state conditions exist at t=0(-) and switch S is closed at t=0 in Fig. 1. Find i_a(t) and i_b(t). Using Laplace Transform.
(20)

Fig. 1

- 2. Explain:
 - (a) Three types of systems
 - (b) Special Signals
 - (c) Butterworth polynomial
 - (d) Frequency normalization (20)

[P.T.O.]

2 15103

SECTION - B

3. For the network shown in Fig. 2, calculate Y and T parameters with 3Ω load across port 2. (20)

Justify Norton theorem as converse of Thevenin theorem. Find
 I₁ and I₂ in the circuit shown in Fig. 3. Use superposition
 principle. (20)

SECTION - C

5. Explain cut set and tie set matrix with example. Develop fundamental cut-set matrix of the network shown in Fig. 4.

6. Test whether the polynomial $P(s) = s^7 + 2s^6 + 2s^5 + s^4 + 4s^3 + 8s^2 + 8s + 4$ is Hurwitz or not. Also explain properties of Hurwitz polynomial. (20)

SECTION - D

- 7. Design a prototype constant-K band pass filter having cut-off frequencies of 4 KHz and 6 KHz and a nominal impedance of 628Ω . (20)
- 8. Synthesize $F(s) = \frac{4(s+1)(s+3)}{s(s+2)}$ using Cauer I and Cauer II

form of realization when F(s) is either an impedance or admittance. (20)

SECTION - E

- 9. (a) Test whether $\frac{s+a}{s^2+bs+c}$ is PRF.
 - (b) What is a routh criterion?
 - (c) In series RLC circuit, determine value of R for critical damping, assume L=2 H, C=5 μF.
 - (d) What is driving point impedance function?
 - (e) What is significance of poles and zeroes?
 - (f) What is characteristic impedance?
 - (g) For $V(s) = \frac{(s+2)}{s(s+1)}$, the initial and final values of v(t).
 - (h) When superposition theorem is applied to a circuit, how does the dependent voltage source behave?
 - (i) Show the effect of increasing the filter order on the characteristic frequency response of a Butterworth low Pass filter.
 - (j) What are the properties of incidence matrix?

(10×2=20)